STUDIES DIRECTED TOWARDS THE ASYMMETRIC TOTAL SYNTHESIS OF ANTILEUKEMIC LIGNAN LACTONES ------SYNTHESIS OF (-)-PODORHIZON-----

Kiyoshi Tomioka, Hidemichi Mizuguchi, and Kenji Koga* Faculty of Pharmaceutical Sciences, University of Tokyo Hongo, Bunkyo-ku, Tokyo 113, Japan

Some biologically potent natural lignans having bis-benzylbutyrolactone skeleton, steganacin (1)¹, podophyllotoxin (2)², (-)-trans-2-(3,4,5-trimethoxy benzyl)-3-(3,4-methylenedioxybenzyl) butyrolactone $(3)^3$, are known to be optically active. Interestingly steganacin has the absolute configuration opposite to those of the other natural lignans. As a consequence of our intention to engage in the total synthesis of steganacin and related lignans in optically active forms we have initiated studies on the development of a new methodology for the construction of optically active 2,3-disubstituted- γ -lactones. The general approach under consideration for the synthesis of these compounds in optically active forms involves the asymmetric induction shown in Scheme 1 wherein the optically active γ -lactone easily available from optically active glutamic acid might be expected to be a useful synthon not only as a chiral source, but also as a part of the skeleton of the target molecules. The purpose of this preliminary communication is to demonstrate that this approach to the synthesis of optically active 2,3-disubstituted- γ -lactones related to the compounds cited above will proceed in a satisfactory fashion to afford the desired compounds.

Scheme 1

The benzyl ether (4)⁴ of (+)- γ -hydroxymethyl- γ -lactone prepared from Lglutamic acid was treated with LDA (two equivalents), ClPO(OEt)₂, and piperonal successively⁵ to give, after column chromatography (SiO₂, CHCl₃), the unsaturated lactone (5)^{6,7} as colorless needles of mp 90°, $[\alpha]_D^{20}$ +167°(c=1.15, CHCl₃) in 50% yield. Catalytic hydrogenation of 5 over 5% Pd on carbon in EtOH-EtOAc (1:1) at room temperature afforded, after column chromatography (SiO₂, EtOAc-CHCl₃=1:4), the corresponding saturated lactone (6) as an oil of $[\alpha]_D^{20}$ + 72.7°(c=1.06, EtOH) in 74% yield. The determination of the degree of asymmetric induction in this step (5 to 6) and removal of the original chiral group were accomplished by the conversion of 6 into (-)-podorhizon (12)⁸ as follows.

Lithium aluminum hydride reduction of 6 afforded the triol (7) as an oil of $[\alpha]_D^{20}$ -10.1°(c=0.93, EtOH) in 67% yield, which was oxidatively cleaved by the action of sodium metaperiodate in aqueous t-BuOH at room temperature to give, after preparative tlc (SiO₂, Et₂O), the hemiacetal (8) as an oil of $[\alpha]_D^{20}$ -21.1° (c=1.05, CHCl₃), NMR & 5.54 (anomeric proton) in 77% yield. Collins oxidation of 8 afforded, after preparative tlc (SiO₂, CH₂Cl₂), the lactone (9)⁹ as an oil of $[\alpha]_D^{20}$ -3.2°(c=1.14, CHCl₃), IR 1770 cm⁻¹ in 77% yield.

Finally the anion of 9 (two equivalents of LDA in THF, -78°) was treated with the mixed anhydride (10)¹⁰ prepared from the acid (11) to give, after preparative tlc (SiO₂, CHCl₃), (-)-podorhizon (12)⁸ as a foam of $[\alpha]_D^{21}$ -40.0° (c= 0.80, CHCl₃) in 74% yield. The optical rotation value of this synthetic 12 shows that the optical purity of this 12 is 50% and therefore the yield of the asymmetric induction in the step 5 to 6 is 50%, and further the addition of hydrogen took place preferentially from the less hindered bottom side of 5¹¹. Single recrystallization of this 12 from MeOH afforded optically pure (-)podorhizon (12)⁸ (mp 125-127°, $[\alpha]_D^{21}$ -75.6° (c=0.57, CHCl₃)) in 40% recovery yield. Since (+)-podorhizon has been converted into (-)-podorhizol⁸, this synthesis of 12 means the formal asymmetric total synthesis of (+)-podorhizol¹².

The first successful asymmetric total synthesis of (-)-podorhizon from chiral γ -lactone easily available from L-glutamic acid holds promise for the asymmetric syntheses of various optically active lignan lactones from optically active glutamic acid. Further studies along this line, especially the approach

4 ~

<u>5</u>

towards the antileukemic lignan lactones¹³, are now in progress in our laboratory.

References and Notes

- (1) S. M. Kupchan, R. W. Britton, M. F. Ziegler, C. J. Gilmore, R. J. Restivo, and R. F. Bryan, <u>J. Am. Chem. Soc</u>., 95, 1335 (1973)
- (2) S. Kohlmuenzer, A. Kosch, and H. Danek, <u>Herba Pol</u>., 17, 110 (1971)
- (3) a) P. B. Mcdoniel and J. R. Cole, J. Pharm. Sci., 62, 1992 (1972); b) S.
 Nishibe, S. Hisada, and I. Inagaki, <u>Yakugaku Zasshi</u>, 94, 522 (1974)
- (4) M. Taniguchi, K. Koga, and S. Yamada, Tetrahedron, 30, 3547 (1974)
- (5) cf. a) D. Comins, A. F. Jacobine, J. L. Marshall, and M. M. Turnbull, <u>Synthesis</u>, 309 (1978); b) A. I. Meyers, K. Tomioka, and M. P. Fleming, <u>J</u>. Org. Chem., in press
- (6) The stereochemistry of 5 was presumed by the comparison of NMR data of 5 with those of the related compounds reported by M. Kuhn et al. See ref. 8.
- (7) Satisfactory spectral and analytical data were obtained for all new compounds.
- (8) (+)-Podorhizon (mp 129-130°, $[\alpha]_D^{21}$ +79.5° (c=0.588, CHCl₃)) has been obtained from naturally occurring podorhizol- β -D-glucoside. M. Kuhn and A. von Wartburg, <u>Helv. Chim. Acta.</u>, 50, 1546 (1967)
- (9) The spectral data of 2 were agreed well with those of reported compound (ref.
 8). The behavior of 9 was also identical with the racemic 9 prepared by the desulfurization of the reported dithiane derivative of 9 (ref. 12).
- (10) Quantitative yield (NEt₂, ClCO₂Et in THF), Mp 94°
- (11) cf. S. A. M. T. Hussain, W. D. Ollis, C. Smith, and J. F. Stoddart, <u>Chem.</u> <u>Comm.</u>, 873 (1974)
- (12) The conversion of (±)-podorhizol into (±)-deoxyepipodophyllotoxin has been reported. F. E. Ziegler and J. A. Schwarts, <u>J. Org. Chem.</u>, 43, 985 (1978)
- (13) The conversion of (\pm) -3 into (\pm) -isostegane has been reported. R. E. Damon, R. H. Schlessinger, and J. F. Blount, <u>J. Org. Chem.</u>, 41, 3772 (1976)

(Received in Japan 19 August 1978)